Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data
نویسندگان
چکیده مقاله:
The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framework. Also, the optimal properties of estimators have been considered. Finallly, we have studied a real heterogeneous and unstructured data using the KPR model.
منابع مشابه
THE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)
Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes. Small area estimation is needed in obtaining information on a small area, such as sub-district or village. Generally, in some cases, small area estimation uses parametric modeling. But in fact, a lot of models have no linear relationship between the small area average and the covariat...
متن کاملA New Nonparametric Regression for Longitudinal Data
In many area of medical research, a relation analysis between one response variable and some explanatory variables is desirable. Regression is the most common tool in this situation. If we have some assumptions for such normality for response variable, we could use it. In this paper we propose a nonparametric regression that does not have normality assumption for response variable and we focus ...
متن کاملNonparametric Kernel Estimation and Regression on Distributions
Low-dimensional embedding, manifold learning, clustering, classification, and anomaly detection are among the most important problems in machine learning. The existing methods usually consider the case when each instance has a fixed, finite-dimensional feature representation. We wish to expand the domain of consideration and let each instance correspond to a continuous probability distribution ...
متن کاملConstrained Nonparametric Kernel Regression: Estimation and Inference
Abstract. Restricted kernel regression methods have recently received much well-deserved attention. Powerful methods have been proposed for imposing monotonicity on the resulting estimate, a condition often dictated by theoretical concerns; see Hall, Huang, Gifford & Gijbels (2001) and Hall & Huang (2001), among others. However, to the best of our knowledge, there does not exist a simple yet ge...
متن کاملthe comparison of two method nonparametric approach on small area estimation (case: approach with kernel methods and local polynomial regression)
small area estimation is a technique used to estimate parameters of subpopulations with small sample sizes. small area estimation is needed in obtaining information on a small area, such as sub-district or village. generally, in some cases, small area estimation uses parametric modeling. but in fact, a lot of models have no linear relationship between the small area average and the covariat...
متن کاملA MODIFICATION ON RIDGE ESTIMATION FOR FUZZY NONPARAMETRIC REGRESSION
This paper deals with ridge estimation of fuzzy nonparametric regression models using triangular fuzzy numbers. This estimation method is obtained by implementing ridge regression learning algorithm in the La- grangian dual space. The distance measure for fuzzy numbers that suggested by Diamond is used and the local linear smoothing technique with the cross- validation procedure for selecting t...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 17 شماره 1
صفحات 135- 156
تاریخ انتشار 2020-08
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023